对抗机器学习:机器学习系统中的攻击和防御

? 基本信息

  • 书名:对抗机器学习:机器学习系统中的攻击和防御
  • 作者:[美] 叶夫根尼·沃罗贝基克, [美] 穆拉特·坎塔尔乔格卢
  • 出版社:机械工业出版社有限公司
  • 出版时间:2019/12/1
  • 字数:94千字

? 推荐语

为你详解机器学习中的那些安全性问题。

? 内容简介

本书讨论机器学习中的安全性问题,即讨论各种干扰机器学习系统输出正确结果的攻击方法以及对应的防御方法。书中首先回顾机器学习的概念和方法,提出对机器学习攻击的总体分类。然后讨论两种主要类型的攻击和相关防御:决策时攻击和投毒攻击。之后,讨论针对深度学习的攻击的新技术,以及提高深度神经网络鲁棒性的方法。最后,讨论对抗学习领域的几个重要问题。

✍️ 作者简介

作者叶夫根尼·沃罗贝基克,圣路易斯华盛顿大学计算机科学与工程学院的副教授。此前,他是桑迪亚国家实验室的首席研究科学家。2008年至2010年,他是宾夕法尼亚大学计算机与信息科学系的博士后研究员。他获得了密歇根大学的计算机科学与工程博士学位(2008)和硕士学位(2004),以及西北大学的计算机工程学士学位。

他的工作重点是安全与隐私的博弈论建模,对抗机器学习,算法和行为博弈论和激励设计,优化,基于代理的建模,复杂系统,网络科学,流行病控制。

沃罗贝基克博士在2017年获得了美国国家科学基金会职业成就奖,并受邀发表了ijcai16早期职业聚焦演讲。他被提名为2008年ACM博士学位论文奖,并获得了2008年IFAAMAS杰出论文奖的荣誉奖。

? 出版社介绍

机械工业出版社是全国优秀出版社,自1952年成立以来,坚持为科技、为教育服务,以向行业、向学校提供优质、权威的精神产品为宗旨,以“服务社会和人民群众需求,传播社会主义先进文化”为己任,产业结构不断完善,已由传统的图书出版向着图书、期刊、电子出版物、音像制品、电子商务一体化延伸,现已发展为多领域、多学科的大型综合性出版社,涉及机械、电工电子、汽车、计算机、经济管理、建筑、ELT、科普以及教材、教辅等领域。
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。