基础信息
书名:机器学习:软件工程方法与实现
作者:张春强;张和平;唐振
出版社:机械工业出版社
出版时间:2020年11月
ISBN:9787111669227
字数:386千字
推荐语
一部告诉你如何将软件工程的思想、方法、工具和策略应用到机器学习实践中的著作。
内容简介
作者融合了自己10年的工程实践经验,以Python为工具,详细阐述机器学习核心概念、原理和实现,并提供了数据分析和处理、特征选择、模型调参和大规模模型上线系统架构等多个高质量源码包和工业应用框架,旨在帮助读者提高代码的设计质量和机器学习项目的工程效率。全书共16章,分为4个部分:第一部分工程基础篇(1~3章),介绍了机器学习和软件工程的融合,涉及理论、方法、工程化的数据科学环境和数据准备;第二部分机器学习基础篇(4、5章),讲述了机器学习建模流程、核心概念,数据分析方法;第三部分特征篇(6~8章),详细介绍了多种特征离散化方法和实现、特征自动衍生工具和自动化的特征选择原理与实现;第四部分 模型篇(9~16章),首先,深入地剖析了线性模型、树模型和集成模型的原理,以及模型调参方法、自动调参、模型性能评估和模型解释等;然后,通过5种工程化的模型上线方法讲解了模型即服务;最后,讲解了模型的稳定性监控的方法与实现,这是机器学习项目的最后一环。
作者简介
作者张春强,是一位具有3年C\\u002FC++、7年大数据和机器学习经验且富有创造力的技术专家,在技术一线摸爬滚打近10年,先后就职于大型IT、世界500强企业,目前就职于某大型金融科技集团,负责数据挖掘、机器学习相关工作的管理和研发。时隔5年,他再次为读者书写了一本技术专著。
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。