机器学习与深度学习

? 基本信息

  • 书名:机器学习与深度学习
  • 作者:陶玉婷 主编
  • 出版社:电子工业出版社
  • 出版时间:2022/10/1
  • 字数:241千字

? 推荐语

本书首先介绍了机器学习的相关概念和发展历史,并在此基础上提出了深度学习。

? 内容简介

全书共12章,其中,第1~7章为机器学习的内容,分别介绍了机器学习的简单模型、贝叶斯学习、决策树、支持向量机、集成学习和聚类;第8~12章为深度学习的内容,由感知机与神经网络开始,之后分别介绍了卷积神经网络、循环神经网络、生成对抗网络及强化学习。

第2~12章均提供了相应的实验案例,不仅配有完整翔实的Python语言代码及相关注释,也给出了实验结果和实验分析,便于初学者上机操作并加强理解。本书注重易学性、系统性和实战性。

✍️ 作者简介

编者陶玉婷,2013年毕业于南京理工大学,获模式识别与智能系统专业的工学博士学位。曾于2010—2011年赴美国亚利桑那州立大学访学半年。现为金陵科技学院智能科学与技术专业骨干教师、CCF会员和JSAI会员。

讲授人工智能数学基础、机器视觉与边缘计算应用等课程,发表教改论文2篇,主持人工智能课程教学试点项目1项。研究方向为图像处理、机器学习、数值计算。

? 出版社介绍

电子工业出版社成立于1982年10月,是国务院独资、工信部直属的中央级科技与教育出版社,是专业的信息技术知识集成和服务提供商。经过三十多年的建设与发展,已成为一家以科技和教育出版、期刊、网络、行业支撑服务、数字出版、软件研发、软科学研究、职业培训和教育为核心业务的现代知识服务集团。出版物内容涵盖了电子信息技术的各个分支及工业技术、经济管理、科普与少儿、社科人文等领域,综合出版能力位居全国出版行业前列。
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。