深度强化学习核心算法与应用

? 基本信息

  • 书名:深度强化学习核心算法与应用
  • 作者:陈世勇 编著, 苏博览 编著, 杨敬文 编著
  • 出版社:电子工业出版社
  • 出版时间:2021/9/1
  • 字数:85千字

? 推荐语

本书是一本深度强化学习领域的入门读物。

? 内容简介

强化学习是实现决策智能的主要途径之一。经历数十年的发展,强化学习领域已经枝繁叶茂,技术内容纷繁复杂,这也为初学者快速入门造成障碍。

全书分为四部分。第一部分主要阐述强化学习领域的基本理论知识;第二部分讲解深度强化学习常用算法的原理、各算法之间的继承与发展,以及各自的算法流程;第三部分总结深度强化学习算法在游戏、推荐系统等领域的应用;第四部分探讨了该领域存在的问题和发展前景。

✍️ 作者简介

编著者陈世勇,腾讯游戏AI研究中心高级算法研究员。毕业于南京大学机器学习与数据挖掘研究所,主要从事强化学习、分布式机器学习方面的研究工作,并在国际顶级会议和期刊上发表多篇论文。

对于大规模强化学习在游戏AI和推荐系统领域的研究和落地有着丰富经验,负责了多款游戏的强化学习AI项目和“淘宝锦囊”强化学习推荐项目研发,参与了虚拟淘宝项目研发。

? 出版社介绍

电子工业出版社成立于1982年10月,是国务院独资、工信部直属的中央级科技与教育出版社,是专业的信息技术知识集成和服务提供商。经过三十多年的建设与发展,已成为一家以科技和教育出版、期刊、网络、行业支撑服务、数字出版、软件研发、软科学研究、职业培训和教育为核心业务的现代知识服务集团。出版物内容涵盖了电子信息技术的各个分支及工业技术、经济管理、科普与少儿、社科人文等领域,综合出版能力位居全国出版行业前列。
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。