📚 基本信息
- 书名:可解释机器学习:模型、方法与实践
- 作者:邵平, 杨健颖, 苏思达
- 出版社:机械工业出版社有限公司
- 出版时间:2021/11/1
- 字数:118千字
💡 推荐语
本书先从背景出发,阐述黑盒模型存在的问题以及不解决黑盒问题模型可能带来的后果,引出可解释机器学习的重要性。
📖 内容简介
文中通过三个不同的应用场景,介绍在银行实战中的数据挖掘方法,由问题、处理方法出发,结合可解释机器学习模型结果,证明模型的有效性和实用性,期望读者通过对本书的阅读,可以更快更好的解决实际业务问题,而非纸上谈兵。
业务场景均为业内的典型案例,希望能够对读者有所启发。同时,本书中还会有大量的公式与代码,保证内容的丰富与严谨,经得起推敲,使得读者知其然且知其所以然。
🏢 出版社介绍
机械工业出版社是全国优秀出版社,自1952年成立以来,坚持为科技、为教育服务,以向行业、向学校提供优质、权威的精神产品为宗旨,以“服务社会和人民群众需求,传播社会主义先进文化”为己任,产业结构不断完善,已由传统的图书出版向着图书、期刊、电子出版物、音像制品、电子商务一体化延伸,现已发展为多领域、多学科的大型综合性出版社,涉及机械、电工电子、汽车、计算机、经济管理、建筑、ELT、科普以及教材、教辅等领域。
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。
